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Why are Epoxies Useful?

* Extremely good corrosion resistance

* Extremely good chemical resistance
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* Good thermal resistance

* Low shrinkage
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* Availability of versatile curing chemistries,
to tune properties (flexibility, curing properties, 
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Versatility of Epoxy Resins

O

OH

OO

O O

O

n

O

Easy Chain
extensions

CrosslinkingAdhesion

Toughness Chemical Inertness



Demands of the Market

Low exotherm Longevity

Fast cure responseAdjustable pot life

Crack ResistanceLight Weight

Fast InfusionLonger Pot Life
Latency

g g

L i it

Fatigue Stable viscosity

Controllable pot life Low viscosity



Goal

• Provide toughness to epoxy thermosets but not at the expense of processibility and 

other key performance attributes for the applications of interest

Processibility: high viscosity, rate of cure, component compatibility, etc.

Performance attributes: Tg, modulus, adhesion, water uptake, solvent resistance, etc.

A li ti P t ti ti (li id d d ) dh i it i l diApplications: Protective coatings (liquid and powder), adhesives, composites including 

wind turbine blades



Overview of Toughening Approaches

Plastisizer ModulusFlexibilization
• Decrease in backbone stiffness

Aliphatic Chem Resist.

• Decrease in crosslink density
• Uses plasticizers and diluents 
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Overview of Toughening Approaches

Plastisizer ModulusFlexibilization
• Decrease in backbone stiffness

Aliphatic Chem Resist.

• Decrease in crosslink density
• Uses plasticizers and diluents 

p
Backbone

TgDevelopment of an effective toughening approach is needed!

CTBN CorrosionToughening
• Properties of modifier

Core Shell
R bb Viscosity
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• Concentration
• Interfacial strength
• Particle size

Rubbers Viscosity
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Introduction to Amphiphilic BCP Technology 

Copolymer Cured epoxy

curing

Bifunctional epoxy Curing agent
Creation of ro gh spherical micelles before c re and refine str ct re d ri• Creation of rough spherical micelles before cure and refine structure duri

• Morphology at nano-meter length scale



BCP in Epoxy
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Morphologies Accessed in the Dilute Limit

5 t % l5 wt.% copolymer

Bilayer Cylinder
h

y
Sphere

wEpoxyphilic

100100 nm100 nm 100 nm100 nm100 nm

vesicles wormlike micelles spherical micelles



Morphology Refinement During Cure

Uncured Cured

•



Self Assembly vs. Conventional Macro-Phase Separation

Conventional Toughening (Example: CTBN Technology)

CuringCuring

10-30 volume %

S lf A bl (BCP T h l )

Epoxy

Curing 
AgentSelf Assembly (BCP Technology)

Curing

Agent

Polymer

Curing

<10 volume %

Better defined structures, reduced volume%, reduced viscosities



Flexibilizers vs Tougheners

Increased level of flexiblizers or toughenersIncreased level of flexiblizers or tougheners
Fracture toughness is represented in units of MPa m0.5



Composite Fabrication – Resin Infusion Process

VARTM (Vacuum Assist RTM)
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Guide to Suitability of Toughening Technology



Performance in Clear Castings



Compact Tension Testing of Epoxies (ASTM D5045)

fracturefracture
(plane strain)

P P = load at failure
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Typical Epoxy Composite Infusion Formulation – Low Tg System

• Significant improvement in Toughness (>150%)g p g ( )
• No change in cured Tg
• Increase in elongation at break

Properties measured at the neat plaque level



Toughening Mechanism



TEM Micrographs

Adjacent to crack wake Some distance from crack wake S di t fAdjacent to crack wake

• Elongated copolymer 
particles
• Orientation of copolymer 
particles

Some distance from crack wake

• Less or no elongation of 
copolymer particles
• No orientation of 
copolymer particles

Some distance from 
crack wake
•No elongation or 
orientation of copolymer 

ti lparticles
• Cavitation

copolymer particles
• Cavitation

particles
• No cavitation



Cavitation-Induced Matrix Shear Banding

(a) initiation of a starting crack

(b) formation of a block copolymer cavitation zone at 
the crack tip when the specimen is loaded

(c) expansion of the cavitation zone and initiation of a 
matrix shear banding zone at the crack tip when the 
hydrostatic stress is relieved by the cavitation

(d) crack propagates when the shear strain energy(d) crack propagates when the shear strain energy 
builds up to a critical value, with a damage zone 
surrounding the crack

(The sizes of the crack, cavitation and shear banding zone are not drawn to scale.)



Crack Tip Blunting

• A reduction of yield stress implies that the plastic deformation ahead of the crack tipA reduction of yield stress implies that the plastic deformation ahead of the crack tip 
is easier

• Localized plastic deformation at the crack tip favors the crack tip being severely• Localized plastic deformation at the crack tip favors the crack tip being severely 
blunted

• Under this condition the strain energy release rate is greater resulting in a higher K• Under this condition, the strain energy release rate is greater resulting in a higher KI
value

Kinloch, A. J.; Williams, J. G. J. Mater. Sci. 1980, 15, 987.



Composite Processing Attributes of the BCP



Fibers BCP

Filtration During Liquid Molding Processes

Fibers BCP

Nano-sized domains exist between fibers No filtration effect



Effect of BCP on Formulation Rheo-kinetics
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Performance in Fiber Reinforced 
Composites



Test setup

Sample

ExtensometerMonitor/Data

IR Temperature Sensor

Monitor/Data
• Load 
• StrainStrain
• Temperature
• Cycles to failurey



Fatigue Results @ Composite Level

Similar resultsSimilar results 
have been 
duplicated 
within Dow

FabricFabric 
Architecture: 
±45o: Resin 
SensitiveR=0.1

• Resin toughness translates into improved fatigue lifetimes especially at low- stress levels



2nd Generation Toughening



Effect of 2nd Gen Toughening on Properties – Clear Castings

Cure schedule followed:Cure schedule followed: 
7 hrs at 70 C



Moving from Clear Castings to Composites

• VARTM Composites made using typical epoxy infusion formulation – 7 hour, 70 C cure

• No major issues observed such as filtration etc. 



Fatigue Life Improvement @ Composite Level IP Captured

Improvement 
in Fatigue Lifein Fatigue Life 
by ~ 1 decade

Fabric Architecture: ±45o: Resin Sensitive



Summary and Conclusions

• Block copolymer technology offers an opportunity to change the viscosity-Tg-toughness

balance in epoxy resin infusion systemsbalance in epoxy resin infusion systems

• Block copolymer toughening approach has advantages in wind turbine blade

it icomposite processing

• Low viscosity
• No filtration• No filtration

• Block copolymer toughening has a positive influence on composite fatigue

• Over 1 decade improvement in composite fatigue life obtained through Dow’s 2nd• Over 1 decade improvement in composite fatigue life obtained through Dow s 2nd

generation toughening 
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